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1. INTRODUCTION

The study of large scale systems and the design of control

structures for them has promoted the development of a number of methodolog-

ies for the classification of such systems and the structures by which

they can be controlled. Two such control structures are those of

hierarchical control and decentralized control. Although these two struc-

tures are often thought to imply one another, they in fact deal with

different aspects of the problem of controlling large scale systems.

Hierarchical control theory ([]-[4]) is founded on the

decomposition techniques of mathematical programming ([51). It is concerned

with the partitioning of the calculations required for the computation of

the system control. This control is then computed iteratively by coordina-

tion at a global level of the subproblems formed by the partitioning of the

calculations. The motivation for hierarchical control theory is the

opportunity for savings in computer time and space given by decomposition

techniques.

Decentralized control theory ([6]-[8]) is concerned not with how

the control is computed, but rather with how the control utilizes the

information present in the state of the system. Specifically, a decentral-

ized control structure restricts the states which can be fed back to form

the various inputs to the system. Although such a feedback law is sub-

optimal in comparison with full state feedback, its desirability is seen

in the elimination of various information links, which in a physically

distributed system can be prohibitively expensive.

Unfortunately, decentralized control laws are usually more

deetaie contrl law
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difficult to compute than centralized (full state feedback) laws. Thus

the application of a hierarchical structure, with its promise of reduced

computation cost, to the calculation of a decentralized control is very

appealing. Furthermore, the two control structures utilize localized

dynamics: hierarchical control in terms of subproblem solution, and

decentralized control in terms of which states are available for control

formulation. The decomposition of the system for hierarchical purposes

can be done in accordance with the partition of the state defined by the

decentralized feedback information flow pattern.

The subject of this report is the application of a hierarchical

computation structure to the computation of fixed decentralized state

feedback gains for the regulation of linear systems with fixed (but

arbitrary) dimension. This category of control problem encompasses many

practical examples. In addition to those cases where the system is

naturally linear, this framework extends to those nonlinear problems that

can be characterized (via linearization) as linear systems driven by white

noise ((9],(101).

The decomposition technique that is utilized is that of inter-

action prediction. As will be shown, this particular method has the

desirable characteristic of minimal computations at the supremal level.

Because of the limitation of information available for feeding back under

the decentralized control structure, the determination of the optimal

feedback gains is dependent upon the (expected) values of the initial

conditions. Thus the control which is derived is open loop. Although

extensions to the basic methodology exist for forming closed loop controllers
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(see, for example [111), the approach used here is a totailyoff-line

calculation of the 21losed loop optimal gains.

Chapter 2 presents the formulation of the problem under consi-

deration, first in terms of optimization of a linear dynamic system with respect

to a linearly quadratic (I.Q) cost function, and then as an equivalent static optimiza-

tion problem. Chapter 3 formulates the interaction prediction algorithm

as a partitioning of the standard mathematical progranmming problem. In

Chapter 4, this prediction algorithm is applied to the problem under con-

sideration. The various computational aspects of the prediction principle

as applied to this problem are presented in the form of a comparison with

the non-decomposed (full order) solution algorithm in Chapter 5. Chapter

6 introduces a demonstration model and presents results and interpretation

of tests with said model, plus discussion on application to control of

power systems. Finally, Chapter 7 summarizes the major results of the

report.
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2. PROEM FORMILATION

Consider the N linear, time-invariant, interconnected systems

x= miixii + ijAijxj +Biui +wit i - 1,N

n i mi ni (2. )x i &R , u i eR , Wi 6R,

where w(t) is a zero mean white noise process with spectral density

The objective is to choose the N controls ui in order to minimize the

quadratic, time-averaged cost functional:

toD be by Xiixi+uiRiuiI (2.2)T T iT

where Qi =Qi T 0 and R, =R >0. These N controls are to be formed by the

linear decentralized state feedback control law

u. = -Gixi (2.3)

Define

x" 1 U =  1 Wi

A-[Aiji. B diag[B i  Gmdiag[G J, Q-diag[Q ]

R -diag[Ri] , _="diag[=ij ]

Then the overall problem (2.1)-(2.3) can be rewritten as

= Ax+Bu+w (2.4)

N N
x6Rn, uRm, WERn, n= i1 n , m i tmi

lfm t (2.5)
J-E[ - f[x Qx+ u Ru]dt}

tf f0

- 1
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u -- Gx (2.6)

The adoption of the control law (2.6) results in a closed loop

feedback matrix parameterized by G, A,(G). Furthermore, the cost 3 also

becomes parameterized by G.

Since the integrand of (2.5) is non-negative, the Fubini Theorem

implies that the integrand and expectation can be interchanged. Exploiting

the linearity of the trace, integration, and expectation operators:

J(G) limI1 1 T T

f Cf 0

lim, I "i T RGxtxT t]d(27

tf +G TERtr[(Q+G 1GEx(t)x (t)]dt (.7
ff

Tlim 1 T ~~t- 28
t~ ~ f tf 0

For all G such that A - BG is asymptotically stable.

The problem (2.4)-(2.6) has thus been transformed into the

equivalent static minimization problem:

minJ(G) tr((Q+ G T R)P (2.9)

* subject to

(A-BG)P+ P(A-BG) T+ Er- 0 (2.10)

where

(~ G : (A-BG) is asymptotically stablel
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3. INTERACTION PREDICTION

As was stated in the introduction, a hierarchical control

structure presents several theoretical advantages over a full-system

control structure, some of which are possible distribution of processing

load and reduction of the overall computational effort. Several decomposi-

tion algorithms exist for which such a hierarchy can be implemented. Among

these are the goal coordination, primal,and interaction prediction algorithms.

The interaction prediction method will be used to decompose (2.9)-(2.10)

into a three level hierarchy. The following is a brief desritivgof this -

algorithm.

Consider the minimization problem

min
uEU J(u,z) (3.1)
zEZ

subject to

z , g(u) (3.2)

h(u,z) - 0 (3.3)

where U, YcU and Z are Hanach spaces and J: UxZ- R, g: U-Z and h: UxZ-Y

are twice continuously Frechet differential functions with R[h u -Y.

The Lagrangian for the problem (3.1)-(3.3) is given by

L(u,z,P,X) -J(u,z) +<p,z-g(u)>+<%,h(u,z)> (3.4)

The stationarity condition, which must be satisfied at the (local) optimal

solution, is given by the set of equations:

V
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Lu(uz,p,) ) - Ju(uz) -Su(u)p +hu (uz) X 0 (3.5)

L z(U,z,p, ) p+Jz(uz) - h z (u,Z) 0 (3.6)

Lp(U,zpX) '0z - g(u) = 0 (3.7)

Lx(u,zp,X) wh(u,z) =O (3.8)

Any optimization technique applied to the problem (3.1)-(3.3) must satisfy

the stationarity condition (3.5)-(3.8) at the opti=mm. The distinction

between the various decompositions is the way in which the equations of

the stationarity condition are partioned among the supremal and infimal

levels of the hierarchy [12]. For interaction prediction, the supremal

problem involves enforcing the constraints (3.6) and (3.7):

fs(p~z'u,),) g (3.9)
[ z [P+Jz(uiz) +hz(uiz)X]

with p and z designated the supremal variables. The infimal enforces (3.5)

and (3.8):

f (p,zu,X) , a (3.10)
h (ujz)

with u and X the infimal variables. The problems fs and f are solved in

an iterative fashion, with each step solving the iteration equations:

F (pk+l k+luk k)=0 (3.11)

k+l k+l k+l k+l
F (P ,z Su , )-0 (3.12)

1.
£
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4. kPPLICATION OF TRE IWIT.BCTION PIEDICTION AI.GRI1Hk

M TRE DZCENTRALIZED 4DNTROL PROBLD(

The purpose of this chapter is to present the interaction

prediction decomposition as it applies to the decentralized control

problem. The approach will be to reformulate the static minimization pro-

blem of Chapter 2 in terms of the standard mathematical programming problem

of Chapter 3. Using this approach, the supremal and infimal equations

follow directly.

in order to put (2.9)-(2.10) into the form of (3.1)-(3.3),

the open loop system matrix is split into block diagonal and of f-

diagonal matrices:

A d [Ai] i -1,N (4.1)

A 0  A -Ad (4.2)

Introduce the interaction matrix Z:

Z tA P + PA T (4.3)
o 0

then the constraint (2.8) becomes

Z - A P + PT (4.4)
0 N

(A d -BG)P+P(Ad-BG) +-=+ZuO (4.5)

the problem defined by (2.7) subject to (4.4)-(4.5) is then exactly of

the form of equations (3.1)-(3.3). The Lagrangian for this problem is:

L(G,P,Z,K,A) -tr([Q+ G TRG P + KI(Ad -BG)P +P(A d - G) T+ + Z

+A[A P+PA T Z]J (4.6)

0 0



9

Where A and K serve as Lagrange multiplier matrices for (4.4) and (4.5),

respectively.

The stationarity condition must, of course, be satisfied. The

resulting five stationarity equations are:

LG(G,P,Z,K,A) - Pd - BT(KP)d - 0 (4.7)

L (G,P,Z,K,A) -Q +G T + (Add - G)TK +(Ad - BG) +ATAP

+AA 0 (4.8)

Lz(G,P,Z,KA) -K - A - 0 (4.9)

LK(G,P,Z,K,A) = (Ad - BG)P + P(Ad " BG) T +4 + Z 0 (4.10)

LA(GPZKA) -k P+PAo - Z - 0 (4.11)

Equation (4.7) follows from Theorem 3 in [13]. (4.8)-(4.lL)

are straightforward calculations.

Following the procedure described in Chapter 3, equations (4.9)

and (4.11) are associated with the supremal level, and (4.6), (4.8) and

(4.10) are assigned to the infimal.

The resultant hierarchical algorithm is based on the

iteration of the equations:

( T
Sr+e 1 koPk + PkAo (4.12)

Supreml

( GkPdk B T (Kkk)d VGJ (4.14)

Infimal (Ad - Bk)Pk + Pk(Ad _ BGk ) T +Wk = 0 (4.15)

(Ad - BGk)TKk + Kk(Ad - BGk) +G ink+ Vk 0 (4.16)

I
- .o.
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where
Wk  ( S(4.17)

and

V. A + T (4.18)
k'Q+A0 A. k k 0

are formed at the supremal level. The subscript k is the Lteration index.

It should be noted that for this realization of the decomposition,

the gradient equation (4.14) couples the subsystems, and as such might

seem inappropriately placed in the infimal. However, because Acd aAd -BG

is a block diagonal matrix, the Lyapunov equations (4.15) and (4.16) can

be decomposed into a number of smaller Lyapunov and Sylvester equations

corresponding to the subsystems of the infimal level. Thus computations

of P and K are executed in a decentralized manner. The solution for P and

K presents the greatest computational complexity of the problem, and this

load is distributed over the infimal subproblems. Only the multiplication

(KP)d is done in a centralized manner.

It is this decomposition of the Lyapunov equations that in fact

is the motivation for the use of the decomposition. Because the number of

multiplications involved in the solution of an n-dimension Lyapunov equation

3
is on the order of n , reduction of the system dimension by decomposition

reduces computational load. Of course, the coupling of the problem (re-

presented by the off-diagonal elements of A) must be taken into account.

This is accomplished at the supremal level of the hierarchy. Considerations

of computational efficiency are the subject of Chapter 5.

Figure 4.1 is a block diagram of the hierarchical structure of

the algorithm. It has the form of a three level hierarchy with the bottom

I

q .



Coordination Update Z,A Supremal

Z,A Kip

Gradient Compute VJG , G

Evaluation for Current Z, K

GiZlGi,Gi GNP Infimnal
All Pil Zi1  Ri ZNN PNN

EKII A i Kii ANN 
N

Subproblem 1, ijt N,N I

Figure 4.1. Hierarchical Structure of the Algorithm for the
Computation of Decentralized Gains.
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level solving for the submatrices Pi and Ki in a decoupled mnanner.
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5. COMPUTATIONAL EFFICIENCY OF DECOMPOSITION

In this Chapter a comparison is made of the computational

requirements of the decomposition approach with those of the full-order

solution technique. The measure of computation is taken to be the number

of double precision floating point (DPFP) multiplications performed in

vector and matrix operations. Counts are limited to vectors and matrices

because these grow as the order of the system, and it is the trend toward

more efficient computation as n gets large that is of interest.

The method of optimization employed involves an accelerated

gradient search which requires the evaluation of the performance index for

a test feedback gain matrix, and the gradient of the index at the test

gain matrix. The calculations required to evaluate the performance index

(hereafter designated CALCF) for a given gain matrix G can be separated

into three distinct computations:

a) Formation of the closed loop matrix

A-A - BG;

b) Solution of the Lyapunov equation

p+pAT+W. 0; and

c) Evaluation of the cost function

cost - 1/2tr(QP,

where Q =G'RG +V

1The DPFP multiplication is the most time-consuming single operation
performed, making it a good index of computational complexity. Further-
more, the number of DPFP additions associated with these matrix operations
is nearly the number of the multiplications. Thus the multiplication
count is a very close approximation to the addition count.

.. .. ..Zr . . .
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Similarly, the calculations required to derive the gradient (CALCG) of the cost

at G can be separated into the two computations:

d) Solution of the Lyapunov equation

A K +KA +QO; and

e) Evaluation of the gradient

GRAD RGP d - BT (KP)d

Subchapter 5.1 contains an analysis of the computations required

to solve the Lyapunov equations, first for the full order method and then

for the decomposition approach the other computations are then presented

in Subchapter 5.2. Finally, a comparison of the efficiency of the two

techniques, and the resulting implications on system structure, are pre-

sented in Subchapter 5.3.

5.1. Lyapunov Equations

5.1.1. Full Order Evaluation (Table 5.1)

Both CALCF and CALCG require the solution for X of Lyapunov

equations of the form

RX+XR T+T -O,

where R, X, and T are n xn matrices. The solution of this equation employs

the technique of Bartels and Stewart [141. This method first involves the

reduction of RT to Real Schur Form (RSF), and then employs a back substitu-

tion to produce the solution. This two-step approach allows for reduced

computation when the system matrix R remains fixed and only the driving

matrix T changes. This feature is exploited in this application. Each of

I.
4s
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Eqn.
Group Ref. Operation Multiplication Count

_________ No. __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

N 2
CALCF 1 Closed Loop System Matrix r '

imi
A -A - BG

C

2 Lyapunov Equation

T -A P +PA + 0-
C C

(a) RSF of A (2 + 4o )n 3[see footnote 2]

(b) Back Substitution for P 7/2n3

3 Closed Loop Weighting MatrixN

Q G TRG +Q For £mn,(2m, +n, + 1)

Cost a tr(QP)/2

CALCG 4 Back Substiution for K in 7/2 n 3

ATK+ KA +Q-O
c C

5 Evaluation of the Gradient

GRAD - RGP d - B (K) i~li i + 2 n

Gradient 6 For Each Call on CALCF 0(( (n M 2)

Search 6 or CALCG J-l ii

Table 5.1. Computation Counts for Full-Order Evaluation.

2is the Average Number of QR Steps Required to make a Subdiagonal Element

Negligible. It is usually Overestimated by a -1.5.
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the two steps, RSF reduction andback substitution, requires on the
3

order of n multiplications.

In CALCF, the equation to be solved is

A P+PAT+HffiO
C c

Because A is newly evaluated for each call on CALCF, it must first beC

reduced to RSF before back substitution (entries 2a and 2b in Table

5.1). In CALCG, the Lyapunov equation that must be solved involves the

transpose of the systemmatrix of CALCF:

T-A K+KAc +Q = 0

The RSF of a matrix can be produced from the RSF of its transpose by

simple interchange of rows and columns ([14],[15]). Furthermore, CALCG

is only performed for a particular closed loop system Ac after the cost

for A is found in CALCF. Thus the RSF of A need be found only once forc c

both CALCF and C&LCG, leaving only the back substitution step to be

performed in CALCG (entry 4).

5.1.2. Decomposition Method (Table 5.2)

In the decomposition approach, the nth order Lyapunov equations

are solved by decomposition into subequations corresponding to the N

subsystems. Because only the block diagonal elements of the closed loop

system matrix, Acd, are used, the subsystem Lyapunov equations decouple.

Thus in CALCF, the diagonal blocks of P are found via:

A P +P A T +W I 0, i-j
cdi ii ii cd + ii

The off-diagonal blocks of P must be found via the more general Sylvester

I-
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Function Eqn.
Group Ref. Operation Multiplication Count

No.

CALCF 1 Diagonal Closed Loop System N 2
Matrix Acd - Ad - BG i i

2 Lyapunov Equation Solved Via

N(N+1)/2 Subequations: N
(a) RSF Reduction of Diagonal Blocks (2+4a)ijin

N
(b) Back Substitution for Diagonal P 7/2 iln_

N_ 2 2
(c) Back Substitution for Off-Diagonal P 5/2 i1 (n+l nin +ninj)

3 Closed Loop Weighting Matrix
NQ= GTRG + V For 1/2 i iini(2m, I n, + 1

Cost - tr(QP)/2

CALCG 4 Back Substitution for K in

A Ki +KA +Q= 0
cd i ij cd N

(a) Diagonal Blocks of K 7/2 il nN-l (ninj  2

(b) Off-Diagonal Blocks of K 5/2 N-1 j (l in nn 2

Table 5.2. Computation Counts for Decomposition Evaluation.

(continued on next page)
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Eqn.
Function Ref.
Group No. Operation Multiplication Count

5 Evaluation of the Gradient

T Ini 2+2mn+n
dd i-li i

Gradient For Each Call on CALCF or N 2

Search 6 CALCG 0[ iii 1 nm)

Supremal TN 2
Coordina- 7 Z =-A P + PAT N * E[n~ (n-n)

t ion

LopV A+ AA + Q i-Z[ (n-d

Table 5.2. continued



19

equation:

A + A d Wij i#A

cdi ii ij cd~ ij 0

Because of the symmetry of P and W, it is only necessary to solve the upper

or lower triangle of P. Thus P is found with the solution of (N(N+1))/2

reduced order Lyapunov/Sylvester equations.

The simple relationship between the RSF's of a matrix and its

transpose are exploited here to further reduce computation. The reduction

of Acdi (i-l,N) to RSF is performed only for the Lyapunov solution of the N

diagonal blocks of P. The (N(N-1))/2 Sylvester equations make use of the

RSF'scomputed on the diagonal, requiring computations for back substitution

only (entries 2a-2c, Table 5.2].

As in the full crder approach, the RSF's used in CALCG for the

solution of the Lyapunov/Sylvester equations

A Kij + K A + Q 0
cd i ij cd i i

are those computed in CALCF requiring only the back substitution for all

(N(N+I))/2 equations [ entries 4a & 4b].

5.2. Auxiliary Computations

In addition to the solution of the Lyapunov (and,

Sylvester) equations, DPFP multiplications are performed

elsewhere in CALCF and CALCG, in the gradient optimization, and, for the

decomposition case, in the supremal coordination. These additional compu-

tations are outlined in the sequel.

'.~J~A
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5.2.1. CALCF and CALCG

Unlike the techniquas employed for the solution of the Lyapunov

equations, the form of the other computations in CALCF and CALCG are

identical for both full order and decomposition algorithms. Therefore,

these computations are outlined only once, but referenced to the susuaries

of computations for both algorithms.

In CALCF the closed loop system matrix A - A-BG must be found.

This involves the calculatior. of the matrix product B*G[entry 1, Table 5.1

& 5.2]. Also in CALCF, the closed loop weighting matrix G RG + V must

be found for the cost. This requires the quadratic matrix multiplication

GT*R*G[ entries 2].

CALCG requires a string of matrix multiplications to produce the

matrix GRAD - RGP - BT(K?) [Entry 5]. This is performed via a set of matrix
dd

multiplications:

RG = R*G

RGPD - RG*Pd

KPD - (K*P)d

BTKPD - BT *KPD

In the implementation of the two algorithms, the block diagonal

structure of the problem is exploited whenever possible. For example, the

product BG of the two block diagonal matrices B and G is formed along the

diagonal blocks

BGi - Bi*Gi, i 1 l,N

In order to eliminate multiplications of off-diagonal zeroes.
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5.2.2. Gradient Search

Because the trajectory of optimization via gradient search is

strongly dependent upon the structure of the problem, as well as upon the

initial guess, it is impossible to specify a priori the computations

required in the execution of a gradient search. However, for each call on

CALCF or CALCG, calculations on the order of M2 (designated 0(M2)), where Mis

the number of parameters being optimized, are performed. M is determined by

the product of the dimensioas of the submatrices of the input matrix B

(entries 6]. The significarce of these multiplications with respect to

overall computational effort is discussed in Subchapter 5.3.

5.2.3. Supremal Coordination

The hierarchical structure of the decomposition introduces some

computations at the supremal level, in the formation of the matrices Z and

V [entries 7 & 8, Table 5.21.

Because A is an off-diagonal matrix (i.e., the diagonal blockso

are zero), the multiplication by known zeros can be avoided for computational

efficiency. This muliiplication count is based on no knowledge of the

density of the off-diagonal submatrices. However, the class of system for

which this decomposition technique is being proposed is often characterized

by sparse off-diagonal blocks. If this sparsity is utilized at the supremal

level, the actual multiplications at the supremal level will be significantly

less than those presented in entries 7 & 8.

5.3. Comparison of Techniques

As formulated here, the two techniques for optimization (full

order vs. decomposition) differ only in the solution of the Lyapunov
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equations and the coordination at the supremal level.

The relationship between these two factors and its effect on the computational

efficiency is the topic of this Subchapter.

In general, the decomposition technique is attractive if the

system has the structure of an aggregation of many low-ordered, weakly-

coupled subsystems. Consider a system in which N subsystem, each of order

ns and with ms inputs, are interconnected. Then n -Nns and m-Nm . We examine

the effect on computation as N increases.

Table 5.3 contains the formulae for the total number of multiplica-

tions for CALGF & CALCG for the full order and decomposition algorithms.

These formulae are derivel for the structure under consideration from the

general formulae presented in Table 5.1 and 5.2 (entries 1-5), with a - 1.5.

Because of the fixed subsystem dimension and input number, the computational

savings are seen in the smaller power of N which appears in the decomposition

formulae. As N gets very large the full order equations are dominated by

23N3  3 7N3 2the terms n for CALCF and - n for CALCG. This becomes increasingly

large in comparision trith the dominant terms of the decomposition evaluation,7N2  33

N2 r3 for CALCF and -N-n for CALCG.

This saving is, of course, offset by the computational cost of

coordination. For each reevaluation of the supremal variables, the gradient

In the decomposition algorithm, the Lyapunov computations in CALCG are
kept small enoug to be on the order of those for the evaluation of the
quadratic term G RG.
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Entry Function Description Multiplication Count Formula

1 Multiplies Per Full Order N(n2 M + 1/2(m n )(2m + n + 1))
Evaluation of CALCF a. a s s

23 3 3

2 Multiplies Per Full Order N(n M 2 + 2m n 2 + Nn 3

Evaluation of CALCG s s S 5

2 s

3 Multiplies Per Evaluation N(n 2m +12mn)2,+n )
of CALCF Via Decomposition 2 s 1/(m )(m n )

+ N( L3 +!(5 1) 3

2 2 3

4 Multiplies Per Evaluation of N(n 2m + 2m n + Nn 3

CALCG Via Decomposition s S S S S 3
+ N(7/2 + 5/2(N-1))n s

n- n, ms 9 M,0 ; i-1,N n - Nn s, m -N. S

a -1.5

Table 5.3. Comparison of Multiplications for Full Order Evaluation in CALCF
and CALCG Vs Those for Evaluation via Decomposition in the Case
of Equidizuensioned Subsystems with Equal Numbers of Inputs.
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optimization process must be reinitialized and re-executed. Obviously,

the rate of convergence at the supremal level is a major factor in

evaluating the overall computational advantage of the decomposition.

Unfortunately, it is not possible to determine the convergence at the

supremal level from dimensioning information, because the convergence is a

function of the coupling between the various subsystems. As the coupling

becomes stronger, the convergence slows or even diverges. As the conver-

gence rate is reduced, more calls are made to CALCF and CALCG, reducing

the effect of the favorable ratio of multiplication counts. Roughly, the

convergence rate must be such that (for large N) the total number of calls

to CALCF and CALCG are less than N times those call counts for the full-

order solution of the problem before a savings is realized.

The preceding was a presentation in simplest terms of the

relationship between the reduced computational cost at the infimal level

and the resultant costs for coordination. The multiplications performed

in the gradient search were not considered. The significance of these

computations depends upon the number of inputs to the subsystems. For the

postulated aggregate of equally-dimensioned subsystems, the number of

multiplications performed per call to CALCF or CALCG (in both the decompo-

sition and full order algorithms) is 0[(N n m ) 2]. In the lower limiting

case, where ms  1 , O(N2 n) is significant with respect to the decomposition's

multiplications of CALCF and CALCG proper. This significance increases as

the number of inputs to the subsystems increases. Specifically, if

m > /n- , the multiplications in the gradient search are greater than thoseS S

of the Lyapunov equations. Thus in actuality the rate of convergence must

be such that the total number of calls to CALCF and CALCG are significantly
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less than N times those call counts for the full-order solution.

i°..
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6. IMPLEMENTATION AND EXAMPLE

Consider a demonstration system consisting of A loop of double

integrators. Assume that the state of each integrator is available

locally for each subsystem. Furthermore, assume coupling between the sub-

systems is a uniform value a. Then the open loop state space equation is

given by

O 1 0 0 0 0 0 0 0

O 0 0 0 0 1 0 0

x+u +w (6.1)
O 0 0 1 0 0

0 0L 01

where n -2N and mn N. The object is to find N local feedback vectors

G in order to minimize a cost function of the form (2.2). For the series

of experiments on this demonstration system, the weighting matrices Q - I,

R - I, were used. The matrix Zis taken to be block diagonal, with the

blocks alternating between [ 2 and [1 6 ] . The block diagram for

this system is given in Figure 6.1.

Implementation of the algorithm presented in (4.12)-(4.16) has

the basic structure of solving the subproblems until the gradient of G is

"sufficiently close" to zero (as indicated by the Euclidean norm of the

gradient '4 e ) for a given Z and A . The process terminates when the new

values for the matrices Z and A are sufficiently close to their values

in the previous iteration (as indicated by E I ( AkAkl)2 ]l/2 <~~

This basic framework car be modified to provide increased efficiency of the

algorithm. Coimmentary on these modifications is made where appropriate
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i/S2  a + 1/S2  a 1/S2

Subystm 1Subystm 2SubsystemN

Figure 6.1. Block Diagram of Chained Double Integrators with Local
State Feedback.



in the following discussion of result: for the demonstration system.

6.1. Effects of Coupling

The irs are ofinvestigation is that of the effect of coupling

on he ota nuberofiterations required. Table 6.1 lists these quanti-

ties for the parameter a ranging from 0.3 to 0.9 coupling, for systems of

2,4 and 8 subsystems. Noteworthy is the closeness in the number of

iterations for 2,4, and 8 subsystems for a given value of a. This strongly

suggests that it is the system structure, and not its dimension, which

controls the convergence at the supremal level. In another series of tests,

only one of the couplings vas varied in the 8th order (4 subsystem) system

while the rest were held to 0.3. When the varying coupling exceeded 0.3,

the iteration count followed the varying coupling. The resulting iteration

counts were very close to those when all of the couplings were uniformly

at the higher value, indicating that the iteration count is dominated by the

strongest coupling between subsystems.

The rate of increase of iterations vs. coupling is also seen to

be extremely linear. Care should be taken in attempting to generalize this

characteristic, however, because of the simplicity of the coupling structure

and uniformity in a for this particular example.

6.2. Calls To CALCF/CALCG Vs Iteration Number

An indication of the rate of convergence of the optimization is

the increase in speed at which the infimal problem is solved for subsequent

values of the infimal variables. This speed is inversely proportional to

the number of calls to CALCF and CALCG per iteration., Before presentation



29

Coupling N -2 N -4 N -8

of_____________

0.3 13 13 13

0.5 21 19 19

Te 6.1 106 InitialGus G.:[ 1.732]
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of the results, however, a few comments on the interpretation of these

counts is in order. For the case where Z is block-diagonal and the P and

K matrices are initialized to zero, the first iteration solves for the N

submatrices Gi as though the subsystems were completely decoupled. There-

fore the solution for this G via gradient search is highly inefficient.

The more direct approach would be the solution of N corresponding Riccati

equations. This also implies that the only variation in calls to CALCF &

CALCG due to different initial guesses for the G matrix occur in the first

iteration, since the second iteration always starts with the optimal G for

the decoupled system. Thus for the second iteration onward, the path of

optimization is the same regardless of the initial guess for G (assuming that

the Hessian at the decoupled optimal G is sufficiently well-formed). The

first iteration counts for CALCF and CALCG therefore say very little about

the optimization via this decomposition technique. In fact, because these

initial calls are used to solve a problem that is of a different nature

from the rest of the optimization process, they bias the data and impede

insight into the workings of the algorithm. Therefore these intial counts

are disregarded in the following analysis.

When these adjustment for first iteration counts are made (Table

6.2) total CALCG is seen to vary quite linearly with CALCF, with an offset

which grows with the order of the system. This linearity can be attributed

to the accerelerated gradient search employed, which almost always assures

a reduction of the cost for each call on CALCF. This being the case, only

calls to CALCF will be considered henceforth, with the understanding that

the calls to CALCG behave accordingly.
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I

Coupling N 2 N 4 N 8

F G F G F G

0.3 42 42 55 51 73 63

0.5 64 64 85 76 109 95

0.7 87 87 100 97 122 114

0.9 113 112 127 120 143 135

F = Total Calls to CALCF G = Total Calls to CALCG

Table 6.2. Adjusted CALCF/CALCG Vs Coupling.

*1
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Figure 6.2 is a plot of the calls to CALCF vs iteration number

for N - 4 and a - 0.9. The extremely rapid drop is attributable to both

the convergence of the supremal variables and to the increasing accuracy

of the approximation to the diessian being used by the gradient search

algorithm. This rapid reduction in calls to CALCF (and CALCG) is

characteristic of all of the examples run. The long tail of 2 calls/

iteration is a function of the supremal convergence bound E In fhe

particular example of Figure 6.2, the problem is essentially solved after

15 iterations, with the remaining iterations enforcing the E - 10- 6

condition.

6.3. Relaxation of e

During the first few iterations of the supremal, the supremal

variables Z and A are at some distance from their final (optimal) values,

and so the gain matrix G being found for these iterations is also distant

from its optimal value. Under this condition, it is not necessary to force

the satisfaction of thE infimal stationarity condition to the final desired

accuracy. Initial relaxation of eI can be incorporated by specifying a

minimum accuracy for the infimal (min Em ) which is strengthened to its

final value e as the supremal variables converge. With appropriate choice

of min E m, this modification has resulted in a reduction of up to 25% in

calls to CALCF and CALCG, with the savings increasing as the coupling is

stronger. This relationship to coupling follows from the fact that the

stronger the coupling, the more distance between initial and final values of

the supremal variables. Figure 6.3 is a plot of total calls to CALCF as a
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Figure 6.2. Calls to CALCF Vs Iteration Number.
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function of em for N - 4 and a - 0.9. For this example, the minimum

appears to be narrowly defined near 5 x 10- 4, although any value between

10- 6 and 5 x 10- 4 results in some saving. For e > 5 x 10-4 the call

count begins to rise again. This rise in call count is accompanied by a

rise in iteration count, as seen in Figure 6.4. This combination results

from over-relaxation of the infimal stationarity condition, which invalidates

the convergence properties of the strictly - formulated iteration equations

(3.1l)-(3.21). Although the call count in this region is still less than

that of the unrelaxed trajectory, the added iterations put an unnecessary

burden on the supremal. This is especially undesirable if the problem is

being solved in a truly distributed manner, where a poor choice of

could result in undue interprocessor communication.

A comparison of the data for Em ranging from unrelaxed to

critically relaxed (for this example, 10-6 < S: < 5 x 10-4 ) shows that

the reduction in calls to CALCF is evenly distributed among the first few

Viterations, which is the expected and desired result. This even reduction

per iteration continues for the overrelaxed case, but the information being

passed between infimal and supremal is inaccurate , thus requiring more

iterations (and thus more total calls to CALCF and CALCG) before convergence

is achieved.

6.4. Strong Coupling

The problem formulation of (2.1)-(2.2) emphasizes the coupled-

subsystem nature of the class of systems being analyzed. Inherent in this

classification is the notion that the subsystems are in some sense weakly

coupled. If the coupling becomes too strong, the domain of convergence

p.

p -J~4* ," b..~
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of the optimal P and A matrices becomes small enough that arbitrary initial

values (i.e., P - K - 0) will not be attracted. In such cases either of

two techniques can be applied.

The first technique is that of"walking-up" the solution. In

this method the coupling is weakened sufficiently for a solution to be

found. In effect, for the original problem with system matrix A - Ad + Ao,

a new system is defined with system matrix Aw a Ad + BA , where 0 4 8 < 1. This

new problem is solved completely for the optimalP , K and G . The problemw w w

is then reinitialized with a stronger value for 8, using Pw' Kw and Gw as

starting values. This process continues until 8 1.

For the demonstratjion system with N - 2, the variables converge

unaided for coupling up to a maximum value of a - 1.6. By walking up the system

in several steps, the solution was found for a -2.7, with a total accumulation

of 505 calls to CALCF and 475 calls to CALCG in 152 iterations of the

supremal loop.

The second technique applicable to the problem is that of relaxa-

tion ((16]). With this method (4.12)-(4.13) become

Zk+ (AoPk + PkAT ) + (1-t)Zk (6.2)

A k+l tK + (l't)A k (6.3)

where t (the relaxation parameter) is initialized to I and re-

duced when incapability of convergence is detected. As convergence is

reached for the relaxed Z & A, t is increased to a maximum value of 1.

Applying the relaxation equations (6.2)-(6.3) to the aforementioned

problem, a solution was found for a - 2.7 after 61 iterations involving 193

calls to CALCF and 183 calls to CALCG.

!.A
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Comparison of these results indicated that when no prior knowledge

about the domain of convergence is assumed, the relaxation method is pre-

ferable. The (eventual) success of the walking-up technique, however,

indicates that some knowledge as to the neighborhood of the optimal P & K

is useful in speeding up the optimization process. Table 6.3 provides an

example of the advantage of starting 'near' the solution. The ability to

start near the solution is a characteristic of some real-world systems.

For example, the coupling between power plants in a large power grid is a

function of the phase-angle between the plants. If the phase angles shift

slowly enough, the controls can be recalculated on the basis of previous

information, rather than from start.

6.5. Comparison of Computations for Evaluation Via Decomposition Vs Full

Order Evaluation

As has been stated previously, the impetus for applying decomposi-

tion techniques to this optimization problem is the expected reduction of

computations as the system becomes large (Chapter 5). Table 6.4 is a tabu-

lation of the total counts of multiplications for a - 0.5 systems of 2, 4

and 8 subsystems.

6.6. Comments on Experimental Results

Experimentation with the chained double integrator shows promise

for the application of this solution algorithm. Of course, it is often not

possible to ascertain how much of the performance is determined by the method

of solution chosen and how much by the particular example chosen to demon-

strate that method. The findings presented in this chapter have been

chosen because they appear to represent the characteristicts of the

I,
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Counts for Solution Itrtos Total Calls Total Calls
with P,K,& G for a train To CALCF To CALCG

0 51 180 180

1.4 39 109 104

N -2 1.

Table 6.3. Savings in Computations for "Walking-Up" From
"Near" Values of P, K, & G.
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2 Subsystems 4 Subsystems 8 Subsystems

Decorap Full Decomp IFull Decomp Full

1) Total Calls to CALCF 64 19 85 27 109 25

2) CALCFMult Factor(1)-(3) 252 754 704 5984 2208 47456

3) (1) x (2) 16128 26330 59840 161568 240672 1186400

4) Total Calls to CALCG 64 16 76 20 95 21

5) CALCG Mult Factor 148 276 520 1960 1936 14928

6) (4) x (5) 9472 4416 39520 39200 183920 313488

7) Mults in Gradsearch 20704 7588 93040 31984 442736 116592

8) Iterations of Supremal 21 - 19 - 19 -

9) IT. Mult Factor (7)-(8) 64 - 768 - 7168 -

10) (8) x (9) 1344 - 14592 - 136192 -

11) Total-(3) + (6) + (7)+(10) 47648 38334 206992 232752 1003520 1616480

12) Decomp Total
1.25 .889 .62

Full Total

Table 6.4. Comparison of Total Decomposition Counts Vs Full Order
Counts for N - 2,4 & 8.

Refers to the correspondlng entries in Tables 5.1-5.2.

--
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decomposition algorithm. Many other interesting relationships have not been

presented because they seem to be too dependent upon the double integrator,

single, uniform coupling structure.

This decomposition technique is not applicable to all decentralized

control problems. As has been shown in this chapter, convergence of the

algorithm is closely related to the degree of weakness of the coupling between

the subsystems. When this coupling becomes sufficiently strong, the supremal

variables diverge with successive iterations. In such cases the formation

of the supremal variables can be relaxed. In theory ([12]), this relaxation

will always result in the eventual convergence of the supremal variables.

In practice, however, the relaxation may move the spectral radius, y, of the

iteration operator very near to 1. For y - 1 the rate of convergence may

be so low as to make this technique impractical (see [161,[131).

One system structure which proved to be nonamenable to this

decomposition technique is that of a network of electrical power generating

plants. Control of such power systems has attracted much academic and

industrial interest ([17]-[20]). In such a network, the subsystems are the

various power plants in the network, and the coupling is introduced via the

tie lines over which the plants pool power to meet shifting demand. This

coupling is a function of the phase difference in the output of the plants.

Minimization of the phase angle between the power plants maximizes the

coupling between them. Unfortunately, the more efficient a power network is

in pooling its collective output, the less likely that a hierarchical control

structure can be applied to it.

An attempt was made to compute the decentralized state feedback

gain matrix for the three interconnected power plant example presented in

1.
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[18]. The overall system matrix was partitioned into three subsystems.

The coupling, which represented 10% of the tie line capacity with a 45"

phase angle between the subsystems (pairwise) , proved too strong for

supremal convergence. Relaxation of the supremal was tried, but abandoned

when the supremal variables were still diverging for t - .001. An attempt

to "walk-up" the problem by solving the problem completely for successively

stronger coupling was also terminated when the coupling at only 0.23

of its final strength produced almost no perceptible convergence in succes-

sive iterations of the supremal variables.

I.. i
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7. SUMM&RY

This report has presented the application of the interaction

prediction decomposition to the hierarchical computation of optimal gains

for decentralized linear systems with quadratic cost functions. For

systems which have the structure of a large aggregation of many low-

ordered, weakly coupled subsystems, this approach has been shown to

actually reduce total computation costs when compared to centralized

computation of the gains. Furthermore, the decomposition of the system

structure for purposes of computation corresponds directly to the decompo-

sition for purposes of control. This correspondence facilitates implemen-

tation of both computation and control in a truly distributed, decentralized

manner.
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